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Abstract

The paper develops a numerical method based on the interacting particles approximation (propagation of chaos) for

the solution of a large class of evolution problems involving the fractional Laplacian operator and a non-local qua-

dratic-type non-linearity. Coupled stochastic differential equations driven by Lévy symmetric a-stable processes are

integrated numerically using Euler�s method and the solutions of the governing equations are obtained from their

statistics. The method is tested on several one- and two-dimensional examples, and established analytical properties

of the solutions are verified for the numerical approximates when they are available. For initial conditions that are

either integrable or monotone bounded functions, it is shown that these methods represent viable tools for constructing

the solution to the Cauchy problem.

� 2005 Elsevier Inc. All rights reserved.
1. Introduction

The solution of stochastic differential equations through computer experiments is already a well-estab-

lished area of numerical analysis, and several classic texts treat this subject and related issues in depth [1–4].
For linear parabolic equations of evolution (i.e., the heat equation), a straightforward relationship can be

established with the generator of Itô diffusions [5]. This in turn may be used to develop probabilistic numer-

ical methods for the solution of such equations, pioneering work in this direction dating back at least to the
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early seventies [6]. Relatively recently, a probabilistic framework based on a general propagation of chaos

result was also developed [7–9] for non-linear initial value problems of the form
otu ¼ r2Dauþ O � ðuBðuÞÞ;
uðx; 0Þ ¼ u0ðxÞ

�
ð1Þ
or equivalently
otv ¼ r2Davþ Ov � BðvÞ;
vðx; 0Þ ¼ v0ðxÞ;

�
ð2Þ
where 0 < a 6 2; u; v : X� ½0; T � � Rd � Rþ ! R, r > 0, Da :¼ �(�D)a/2 is the fractional (power of the)

Laplacian in Rd defined via the Fourier transform F
Fðð�DÞa=2uÞðxÞ :¼ ðjxj2Þa=2ðFuðxÞÞ; x 2 Rd ; ð3Þ

and B(u) is a linear Rd-valued integral operator with the kernel b : Rd � Rd ! Rd :
BðuÞðxÞ ¼
Z
Rd

bðx; yÞuðyÞdy: ð4Þ
In the interacting particles approximation methods (i.e., the discrete setting for propagation of chaos), the
dependent variable u in (1) is interpreted as the probability density function of the position of a system of

interacting particles moving in Rd , in direct correspondence with the interpretation of the solution of the

Fokker–Planck equation [1], while v in (2) represents the corresponding cumulative distribution function.

Based on this theoretical framework we present here a Monte-Carlo type numerical method for the solution

of the above initial-value problems in one and two space dimensions. Our approach uses Euler�s method to

integrate in time the coupled system of stochastic differential equations that govern the motion of the par-

ticles. These equations are driven by Lévy symmetric a-stable processes, which revert to Wiener processes

for the case of normal diffusion.
For a general setting, we will assume that u0(x) is a non-negative smooth integrable function with com-

pact support in Rd and v0(x) is a non-decreasing, right-continuous and bounded function satisfying
0 ¼ lim
x!�1

v0ðxÞ 6 lim
x!þ1

v0ðxÞ ¼ c < 1:
In the case of classical normal diffusion (a = 2), Eq. (1) becomes a Fokker–Planck-type parabolic equation

of evolution that is encountered for a large number of phenomena. For instance, if
bðx; yÞ ¼ cðx� yÞjx� yj�d
and c < 0, then (1) models the diffusion of charge carriers in electrolytes, semiconductors or plasmas inter-

acting via Coulomb forces. If c > 0, it describes gravitational interaction of particles in a cloud or galaxies

in a nebula.

For the Biot–Savart kernel
bðx; yÞ ¼ ð2pÞ�1ðx2 � y2; y1 � x1Þjx� yj�2 ð5Þ

in R2, it becomes equivalent to the vorticity formulation of the two-dimensional Navier–Stokes equations.

Also, if the kernel b is the Dirac distribution
bðx; yÞ ¼ cdðx� yÞ
in R, one obtains the one-dimensional Burgers� equation
otu ¼ r2oxxuþ coxðu2Þ: ð6Þ
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Burgers� equation is also obtained if the kernel b in (2) is the Heaviside function, b(x,y) = cH(x � y), where

H(z) = 0 if z < 0 and H(z) = 1 if z P 0, leading to
otv ¼ r2oxxvþ cvoxv: ð7Þ

Furthermore, for
bðx; yÞ ¼ ðc1dðx� yÞ; c2dðx� yÞ; . . . ; cddðx� yÞÞ

in Rd , then (1) becomes the fractal Burgers equation
otu ¼ r2Dauþ c � Oðu2Þ; ð8Þ
where c ¼ ðc1; c2; . . . ; cdÞ 2 Rd , and if b(x,y) = cd(x � y) in R, Eq. (2) is the fractal Kardar–Parisi–Zhang

equation governing interface growth [10]
otv ¼ r2Davþ cðoxvÞ2: ð9Þ
The extension of classical parabolic equations to the fractional diffusion case is motivated by the fact that

such anomalous diffusion processes are encountered in several areas of science and technology. These in-

clude non-linear acoustics, statistical mechanics, biology, fluid flow and mathematical finance. Our main
interest resides in developing a numerical methodology for the modeling of phenomena related to interfa-

cial growth in chemical vapor deposition (CVD) processes [11], which involve hopping and trapping of mol-

ecules and hence are governed by such equations. Let us note from the onset that a direct numerical

approach to such equations of evolution, using for example classical techniques such as finite differences,

is extremely difficult due to the doubly non-local character of the equations [7]. First, the fractional Lapla-

cian operator Da = �(�D)a/2 for a 2 (0,2) is no longer a differential but an integro-differential operator, and

second, the non-linear convection term may involve integrals over the whole space Rd . Spectral methods

[12] do, however, constitute an exception to this rule, since the evaluation of the fractional Laplacian
operator is straightforward in Fourier space. Similarly, the integral convolution operator B(u) becomes a

product in Fourier space and can be evaluated easily. The non-linear convection term appearing in the gov-

erning equations is, on the other hand, usually computed by what is known as a pseudospectral approach.

This involves transforming from Fourier to physical space, evaluating the non-linearity in physical space,

then transforming back to Fourier space. A well-known problem with this approach is the introduction of

an aliasing error [12]. Also, the initial data for the CVD processes we are interested in is not periodic. In-

stead, the initial surface height is a random variable for which we may know, at most, some statistical mea-

sures (i.e., the first moment and second moment). While the use of spectral methods remains an alternative,
the above reasons together with the current lack of expertise in the use of probabilistic methods for frac-

tional diffusion problems (to the authors� knowledge, the only numerical work to date was for the case of

normal diffusion [13,14]) render the latter worth studying. While more demanding than Fourier spectral

methods in terms of computing resources, in particular in fewer space dimensions, their better understand-

ing is crucial to the development of more cost-effective strategies, for example the use of importance sam-

pling. Finally, we would like to note that the interacting particles method also offers promise for boundary

value problems involving the fractional Laplacian.

The paper is arranged as follows: in the next section we describe the interacting particles approximation
and present several asymptotic properties of the solutions to the governing equations which we need to

validate our results. Section 3 is devoted to an algorithmic discussion of our implementation. Numerical

experiments for several problems with various initial conditions for one and two space dimensions are

reported in the next two sections.

In terms of notation, throughout this paper we use iuip for the norm in LpðRdÞ and Hb for the usual

Sobolev space W b;2ðRdÞ. Any constant independent of solutions is denoted by c.
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2. The interacting particles approximation

We assume that a 2 (1,2] which allows us to operate with expectations of the corresponding a-stable
processes [9] and restrict most of the subsequent discussion to Eq. (1) for simplicity, since the extension

to Eq. (2) is relatively straightforward. Let u = u(x, t) P 0, x 2 Rd , t 2 (0,T) be a local in time weak solution
of the initial-value problem (1) with kernel b(x,y) = b(x � y) satisfying potential estimates of the type
jbðxÞj 6 c1jxjb1�d
or jrbðxÞj 6 c2jxjb2�d ð10Þ
for some 0 < b1, b2 < d and 0 < c1, c2. Here, a weak solution is a function u 2 L2ðð0; T Þ; H a=2ðRdÞÞ such that

the integral identity
Z
Rd

ugdx�
Z t

0

ds
Z
Rd

ugs dxþ
Z t

0

ds
Z
Rd
ðDa=2uDa=2gþ uBðuÞ � rgÞdx ¼

Z
Rd

u0ðxÞgðx; 0Þdx
holds for every test function g 2 H 1ðð0; T Þ � RdÞ. For an initial condition 0 6 u0 2 L2ðRdÞ \ L1ðRdÞ, local
and global existence results for such weak solutions have been established in [9].

Without loss of generality we may assume that u is bounded, i.e.
sup
x2Rd ;t2½0;T �

juðx; tÞj < 1: ð11Þ
Moreover, since we will be working with (L1 \ L1)-solutions, the estimate
sup
x2Rd ;t2½0;T �

jBðuÞðxÞj < 1 ð12Þ
follows from the potential estimate (10), the Sobolev embedding theorem, and the boundedness of the solu-

tion u.
Consider a solution Xt of the stochastic differential equation
dX t ¼ rdSt � BðuÞðX tÞdt;
X t¼0 ¼ X 0; X 0 � u0ðxÞdx;

�
ð13Þ
where t 2 [0,T], St is a standard symmetric a-stable process with its values in Rd . Since the coefficient
B(u)(Xt) in (13) is bounded, this stochastic differential equation has a unique weak solution. Furthermore,

the stochastic process Xt is related to a solution u of (1) satisfying (11) by
P ðX t 2 dxÞ ¼ uðx; tÞdx:

In other words Xt is the non-linear Markov process corresponding to this evolution equation (we refer to [9]

for the proof). For Eq. (2) the corresponding relation is
P ðX t 6 xÞ ¼ vðx; tÞ

with v0(x) = v(x, 0) the cumulative distribution function of the random variable X0.

The interacting particles approximation constructs the above solutions in a statistical way using a

Monte-Carlo simulation approach. To describe it, let Si
t

� �
i¼1; 2; ...;N

be N independent copies of Lévy sym-

metric a-stable processes with the common infinitesimal generator Da = �(�D)a/2. When a = 2, the case of

normal diffusion, Si
t becomes the familiar Wiener process (Brownian motion). The approximation has been

studied extensively, both analytically and numerically [13–16], in the case when the driving process is a Wie-
ner process. Propagation of chaos results for Lévy symmetric a-stable processes [7] have been obtained

recently by regularizing the corresponding stochastic differential equations (see Eq. (15) below) because

of the weak parabolic regularization effect of Da. Therefore, let d�(x) :¼ (2p�)�d/2 exp (�|x|2/(2�)), � > 0, be

a standard smoothing kernel.
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Consider the measure-valued process (empirical distribution)
Y N ;�
t :¼ 1

N

XN
i¼1

dðX i;N ;�
t Þ ð14Þ
of N interacting particles with positions X i
t

� �
i¼1; ...;N

:¼ X i;N ;�
t

� �
i¼1; ...;N

, whose dynamics is described by the
system of regularized stochastic differential equations
dX i
t ¼ rdSi

t �
1

N

X
j 6¼i

b�ðX i
t � X j

tÞdt; i ¼ 1; . . . ;N ; ð15Þ
where b� = d� * b.
Assume that the initial particles� positions fX i

0gi¼1; ...;N satisfy
sup
N

sup
k2Rd

N 1�1=a

1þ jkja E Y N ;�
0 � u�0ðxÞ;Xk

� �� �
< 1 ð16Þ
for some a P 0 and all the charactersXkðxÞ ¼ eikx. Then, for each � > 0, the empirical process Y N ;�
t is weakly

convergent
Y N ;�
t ) u�ðx; tÞdx in probability as N ! 1; ð17Þ
where ) denotes the weak convergence of measures, and the limit density u� :¼ u�(x, t), x 2 Rd , t 2 [0,T],
satisfies the regularized equation
otu� ¼ r2Dau� þr � ðu�B�ðu�ÞÞ ð18Þ

with B� = d� * B.

Furthermore, given any sequence of regularizations (18) with � ! 0, the family of empirical distributions

fY N ;�
t g contains a sub-sequence weakly convergent to a solution u(x, t) of (1) [7]. Thus, if u� are solutions of

the regularized Eq. (18) such that their initial conditions satisfy iu� � u0i2 ! 0 as � ! 0 for some

u0 2 L2ðRdÞ, then given any sequence �k ! 0 as k ! 0, there exists a sequence Nk ! 1 and a weak solution

u(x, t) of (1) such that for each / 2 C1
0 ðRdÞ and all t 2 [0,T]
E Y Nk ;�k
t � uðx; tÞ;/ðxÞ

� �� �
! 0 as Nk ! 1:
We note that the solution v(x, t) to (2) at a fixed time t can be similarly approximated by the following mea-

sure-valued process:
ZN ;�
t ðxÞ :¼ 1

N

XN
i¼1

Hðx� X i;N ;�
t Þ 8x 2 Rd : ð19Þ
Regarding the convergence of the approximation, the following was proven in a general setting by Bossy

and Talay [15] for the case of normal diffusion:

Convergence rate. For T fixed, let Dt > 0 be such that T ¼ LDt; L 2 N. Let v(x, tk) be the solution at time

tk = kDt of Burgers� equation (7) with the initial condition v0. Let V(x, tk) be the interacting particles approx-

imation, with the number of particles denoted by N. There exists a strictly positive constant c depending on r,
v0 and T such that, for all k = 1, 2, . . .,L
Ekvð�; tkÞ � V ð�; tkÞk1 6 c
1ffiffiffiffi
N

p þ
ffiffiffiffiffi
Dt

p	 

: ð20Þ
The time discretization error in the above estimate comes from the Euler discretization. For additive noise
as in Eq. (15), the case we are interested in, the above estimate is not sharp; Euler�s method has strong order
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one in this case (i.e., the error is proportional to Dt). Both the numerical results presented in [15] and our

results in the later sections confirm this latter fact. Unfortunately, the fractional diffusion case is far more

complicated and so far we could not obtain an analytical result for the convergence rate of the interacting

particles approximation (note however the results of Jacod [17] and Protter and Talay [18] for Euler�s meth-

od in the context of Lévy processes). We propose the following conjecture fully supported by our numerical
results as shown in the subsequent sections:

Convergence rate for additive noise. For T fixed, let Dt > 0 be such that T ¼ LDt; L 2 N. Let v(x, tk) be the

solution at time tk = kDt of Eq. (8) with a 2 (1,2] and initial condition v0. Let V(x, tk) be the interacting par-

ticles approximation, with the number of particles denoted by N. There exists a strictly positive constant c

depending on r, v0 and T such that, for all k = 1, 2, . . .,L
Ekvð�; tkÞ � V ð�; tkÞk1 6 c
1ffiffiffiffi
N

p þ Dt
	 


: ð21Þ
3. Algorithm description

In this section, we illustrate in detail the algorithm for the numerical solution of the initial-value prob-

lems (1) and (2), based upon the time discretization of the system of regularized stochastic differential equa-

tion (15).

To solve the system (15) numerically, we first discretize the time interval [0,T]. Although a fixed time step

is not needed, for simplicity we let Dt = T/L for some positive integer L, and tk = kDt, k = 1, 2, . . .,L. Our

numerical approximation to X tk and Stk will be denoted Xk and Sk, respectively. The explicit Euler scheme

leads to the following discrete-time system: for 1 6 i 6 N and 1 6 k 6 L
X i
k ¼ X i

k�1 þ r Si
k � Si

k�1

� �
� 1

N

X
j 6¼i

b� X i
k�1 � X j

k�1

� �
Dt; ð22Þ

X i
0 ¼ xi0; ð23Þ
where the N initial particles fxi0gi¼1; ...;N � Rd are independent random numbers whose probability density is

given by the initial condition u0 in (1).
For the generation of the time increments of the Lévy symmetric a-stable processes {Si}i = 1, . . .,N, several

methods are available [19–21]. While the algorithm due to Chambers et al. [21] allows the generation of

general Lévy distributions, for the restricted case of symmetrically stable processes we chose the fast algo-

rithm due to Mantegna [20]. It allows us to generate the time increments for any index a ranging contin-

uously from 0.3 to 1.99. We briefly outline the algorithm below. For the case a = 2, a normal

distribution random number generator is used instead [2].

Mantegna�s algorithm uses a fitted asymptotic expansion for the generation of stable distributions. The

first step in this algorithm is to generate a set of independent random variables of the form
si ¼
xi

jyij
1=a

; i ¼ 1; . . . ;m; ð24Þ
where xi and yi are two random variables normally distributed with standard deviation rx and ry, respec-
tively. The stochastic variable
zm ¼ 1

m1=a

Xm
i¼1

wi; ð25Þ
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where m independent stochastic variables {wi}i = 1, 2, . . .,m are generated independently from random vari-

ables si by
wi ¼ ½ðKðaÞ � 1Þ expð�jsij=CðaÞÞ þ 1�si; i ¼ 1; . . . ;m ð26Þ

converges very fast to a symmetric a-stable distribution. Here the two parameters K(a) and C(a) are

obtained by fitting the asymptotic expansion of the Lévy distribution such that it holds both for large

and small absolute values of the argument.

The final solution stage involves constructing a histogram from the particle positions to compute the

empirical distributions (14) and (19) that approximate the solutions u(x, t) of (1) and v(x, t) of (2),

respectively.
4. Numerical experiments in one space dimension

In this section several initial-value problems of the form (1) and (2) both with normal diffusion (a = 2)

and anomalous diffusion (1 < a < 2) are solved using the interacting particles approximation. Since normal

diffusion has been studied previously by other researchers [13–15], results for a = 2 are presented here only

for validation and comparison purposes, as in this case some of the problems that we consider have an

analytical solution.

4.1. Integrable initial conditions

A natural setting for the methods discussed herein arises when the initial conditions are integrable func-

tions. Such initial conditions can in turn be interpreted as probability density functions of the particle posi-

tions at time t = 0. Thus, the first problem considered is
otuþ uoxu ¼ r2Dau; 1 < a 6 2;

uðx; 0Þ ¼ 1=
ffiffiffiffiffiffi
2p

p
expð�x2=2Þ;

�
ð27Þ
where u = u(x, t), x 2 R, and t 2 [0,T]. This initial-value problem is obtained from (1) by taking

b(x,y) = �1/2d(x �y), and d = 1 where d(x) is the Dirac distribution. Computations have been performed
for two different diffusion coefficients, r2 = 1 and r2 = 0.01, respectively. The discrete-time system of regu-

larized stochastic differential equations becomes
X i
k ¼ X i

k�1 þ rðSi
k � Si

k�1Þ þ
1

2N

X
j 6¼i

d�ðX i
k�1 � X j

k�1ÞDt; ð28Þ

X i
0 ¼ xi0 ð29Þ
for 1 6 i 6 N and 1 6 k 6 L; {Si}i = 1, . . .,N are independent Lévy symmetric a-stable processes.
When a = 2, Eq. (27) becomes the one-dimensional classical Burgers� equation for which the well-known

Cole–Hopf transformation provides the analytical solution
uðx; tÞ ¼
R1
�1½ðx� yÞ=t� exp½ð2r2Þ�1ðnðyÞ � ðx� yÞ2=2tÞ�dyR1

�1 exp½ð2r2Þ�1ðnðyÞ � ðx� yÞ2=2tÞ�dy
; ð30Þ
where nðxÞ ¼ �
R x
�1 uðy; 0Þdy. For the numerical approximation we generated an approximate initial

condition by sampling from a standard normal pseudo-random number generator. Fig. 1 compares the

interacting particles approximation obtained using this approximate initial condition to the analytical



Fig. 1. Interacting particles approximation to the solution of the 1D Burgers� equation with r2 = 1 at time T = 2 using (a) 10,000

particles (b) 100,000 particles. Smoothing parameter � = 1.0. Exact solution also shown (full line).
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solution of the one-dimensional Burgers� equation with viscosity r2 = 1 at time T = 2 using 10,000 and

100,000 samples, respectively.

For 1 < a < 2, the initial-value problem (27) becomes the one-dimensional fractal Burgers� equation.
Results are presented in this case for two different indices of stability, a = 1.5 and 1.25. Figs. 2 and 3 show

the time evolution of the solution of (27) for the case r2 = 1, a = 1.5 and r2 = 0.01, a = 1.25 compared to the

case a = 2, respectively. The first case corresponds to a solution dominated by diffusion and the latter to a

solution dominated by convective effects. The effect of the smoothing parameter � appearing in the regular-

izing kernel d� is captured in Fig. 4 for two different values of viscosity, r2 = 1 and r2 = 0.01. As it may be
expected, the effect is large for the convection-dominated case and negligible for the diffusion-dominated

case. In all numerical experiments we conducted so far we did not notice any negative effect when assigning

a very small value to the smoothing parameter (� = 0.0001), which obviously represents a safe practice for

convection-dominated problems.

To further validate our numerical experiments for the anomalous diffusion case, we consider the follow-

ing property of the solutions to the fractal Burgers� equation, see [7] for details:

Time decay of solutions: Let 0 < a 6 2. Suppose u is a sufficiently regular solution of the (multidimensional)

fractal Burgers� equation (8) with u0 2 L1ðRdÞ. Then the L2-norm of u decays, as t ! 1, at a rate given by
kuðtÞk2 6 cð1þ tÞ�d=ð2aÞ
: ð31Þ
Table 1 presents estimates of the discrete L2-norm of the approximate solution U(x,T) for r = 1, r = 1.5

at times T = 1, 2, . . ., 5. The discrete L2-norm is computed here as
kUk2 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXM
j¼1

U 2ðxj; T Þ

vuut ; ð32Þ
where �10 = x1 < x2 < � � � < xM� 1 < xM = 10, M = 201. Numerically, we obtain the following inequality:
kUðtÞk2 6 1:5215ð1þ tÞ�1=3
:

We plot the analytical estimates for the decay rate versus the numerical results for this case alongside the

normal diffusion case in Fig. 5.
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4.2. Bounded initial conditions

In this subsection we solve the initial-value problem
Fig. 2.

1, 2 (a
otv� voxv ¼ Dav; 1 < a 6 2;

vðx; 0Þ ¼ 1
2
ðtanhðx=4Þ þ 1Þ;

�
ð33Þ
where v = v(x, t), x 2 R, and t 2 [0,T]. This initial-value problem is an example of (2) obtained by taking

b(x,y) = H(x � y), r = 1, and d = 1 where H(x) is the Heaviside function. As mentioned in Section 2, we
Approximate solution for the 1D Burgers� equation with r2 = 1 using 100,000 particles with smoothing parameter � = 1 at t = 0,

) 1D classical Burgers� equation (a = 2), exact solution also shown (full line) (b) 1D fractal Burgers� equation (a = 1.5).



Fig. 3. Approximate solution for the 1D Burgers� equation with r2 = 0.01 using 100,000 particles with smoothing parameter � = 0.01 at

t = 0, 2, 4 (a) 1D classical Burgers� equation (a = 2), exact solution also shown (full line) (b) 1D fractal Burgers� equation (a = 1.25).
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interpret the solution of Eq. (33) as the cumulative distribution function of a system of particles whose

probability density function satisfies the following equation:
otu ¼ Dauþ oxðu
R
R
Hðx� yÞuðy; tÞdyÞ; 1 < a 6 2;

uðx; 0Þ ¼ u0ðxÞ;

�
ð34Þ
where u0ðxÞ ¼ oxvðx; 0Þ ¼ ox½12 ðtanhðx=4Þ þ 1Þ�.



Fig. 4. Effect of the smoothing parameter � in the regularizing kernel for N = 100,000 particles for r2 = 1 left column) and r2 = 0.01

(right column). Exact solution also shown (full line). (a) � = 1 (b) � = 0.01 (c) � = 0.0001.
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Table 1

Time decay of the solution of 1D fractal Burgers� equation (a = 1.5)

T 1 2 3 4 5

iUi2 (N = 10,000) 1.210 1.024 0.909 0.847 0.788

iUi2 (N = 50,000) 1.208 1.014 0.907 0.828 0.772

Fig. 5. Time decay of solution to the classical (a = 2) Burgers� equation (curves above) and 1D fractal (a = 1.5) Burgers� equation
(curves below) computed using 50,000 particles. Also shown are the estimated values of the constant c in (31).
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The corresponding system of regularized stochastic differential equations is given by
X i
k ¼ X i

k�1 þ ðSi
k � Si

k�1Þ �
1

N

X
j 6¼i

H �ðX i
k�1 � X j

k�1ÞDt; ð35Þ

X i
0 ¼ xi0: ð36Þ
The inverse transform method [2] is used to generate pseudo-random numbers for the initial positions

fxi0gi¼1;...;N in the discrete system (35) and (36), since the initial distribution function v(x, 0) in (33) is

invertible.

For a = 2, Eq. (33) becomes the one-dimensional classical Burgers� equation in a changed frame of

reference. The solution is a traveling wave of the form
vðx; tÞ ¼ 1
2
ðtanhððxþ t=2Þ=4ÞÞ þ 1Þ: ð37Þ
Fig. 6 shows this solution at three time instants, t = 0, 1, 2. We further use this known solution to study the

convergence rate of the interacting particles approximation, by computing an approximation of the

L1-norm of the error at time T
kerrork1 ¼ kvð�; T Þ � V ð�; T Þk1 ’
XM
j¼1

jvðxj; T Þ � V ðxj; T ÞjDx; ð38Þ



Fig. 6. Interacting particles approximation to the 1D classical Burgers� equation (a = 2). N = 10,000 and t = 0, 1, 2. Exact solution also

shown (full line).
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where fxjgMj¼1 represents the equidistant (with step size Dx) discretization of the spatial domain used to

construct the empirical measure (histogram). The expectation of the L1-norm of the error is computed

by averaging computations based on different initializations of the pseudo-random number generator.

Tables 2 and 3 show the results corresponding to N = 500 · 2l and Dt = 2�l for l = 1, . . ., 5, respectively.
These results are representative of results we obtained for a number of test cases. The slopes of the linear

interpolant obtained by a least squares fit to the data indicate an error satisfying
Table

Conve

N

Eierro
Ekvð�; tkÞ � V ð�; tkÞk1 ¼ OðN�1=2 þ DtÞ: ð39Þ

In the case of anomalous diffusion, the solution behavior is different from the case of normal diffusion; that
is, while the solution of the classical Burgers� equation propagates without deformation, the solution of the

fractal Burgers� equation expands while propagating. Fig. 7 shows the shape of the solution of the initial-

value problem (33) at the same three time instants for a = 1.5. Tables 4 and 5 present our numerical results

for the convergence to the exact solution as a function of N and Dt. These results are also plotted in Figs. 8

and 9. Since no exact solution is known in this case, we constructed it numerically using N = 300,000

particles and Dt = 0.001.

4.3. Fractal Burgers-KPZ equations

We consider next the one-dimensional fractal KPZ equation with a bounded function as an initial

condition,
2

rgence rate versus N for Dt = 0.001 fixed

1000 2000 4000 8000 16,000

ri1 2.8138e � 2 2.0669e � 2 1.3203e � 2 9.4255e � 3 6.6555e � 3



Table 3

Convergence rate versus Dt for N = 100,000 fixed

Dt 1/2 1/4 1/8 1/16 1/32

Eierrori1 3.0222e � 1 1.5006e � 1 7.5150e � 2 3.7756e � 2 1.9148e � 2

Fig. 7. Interacting particles approximation to the 1D fractal Burgers� equation (a = 1.5). N = 10,000 and t = 0, 1, 2.

Table 4

Convergence rate versus N for Dt = 0.005 fixed

N 2000 4000 8000 16,000

Eierrori1 a = 1.5 3.8131e � 2 2.1395e � 2 1.3986e � 2 1.1831e � 2

a = 1.25 4.2994e � 2 2.5262e � 2 1.6873e � 2 1.3023e � 2

Table 5

Convergence rate versus Dt for N = 100,000 fixed

Dt 1/4 1/8 1/16 1/32

Eierrori1 a = 1.5 1.4005e � 1 6.6693e � 2 2.9792e � 2 1.4254e � 2

a = 1.25 1.3460e � 1 6.2899e � 2 2.7638e � 2 1.4305e � 2
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otvþ ðoxvÞ2 ¼ Dav; 1 < a 6 2;

vðx; 0Þ ¼ 1
2
ðtanhðxÞ þ 1Þ;

(
ð40Þ
where v = v(x, t), x 2 R, and t 2 [0,T]. This initial-value problem can be obtained from (2) by taking the

potential kernel b(x,y) = �d(x � y), r = 1, and d = 1. One can also interpret the solution to Eq. (40) as

the cumulative distribution function of a system of particles whose probability density function is a solution

to the following PDE:



Fig. 8. Expectation of the L1-norm of the error for a = 1.5 as a function of the number of particles N (top) and of the time step Dt
(bottom). p1 and p2 represent the least-square fits of the exponents in the error bound Ekerrork1 ¼ OðNp1 þ Dtp2Þ.

Fig. 9.

(botto
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Expectation of the L1-norm of the error for a = 1.25 as a function of the number of particles N (top) and of the time step Dt
m). p1 and p2 represent the least-square fits of the exponents in the error bound Ekerrork1 ¼ OðNp1 þ Dtp2Þ.



Fig. 10

fractal
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otuþ oxðu2Þ ¼ Dau; 1 < a 6 2;

uðx; 0Þ ¼ 1=ð2cosh2ðxÞÞ;

�
ð41Þ
where u = u(x, t), x 2 R, and t 2 [0,T]. Here, u(x, 0) = oxv(x, 0). The latter initial-value problem (41) is the

fractal Burgers� equation which can be transformed into the fractal KPZ equation (40) via the substitution

u = oxv, taking into account the fact that the operators Da and ox commute. Fig. 10(a) shows the numerical
solution of the fractal KPZ equation (40), while Fig. 10(b) shows the solution of the fractal Burgers� equa-
. Solutions constructed from the same interacting particles approximation using 50,000 particles at t = 0, 1, 2 for (a) the 1D

KPZ equation (a = 1.5) (b) the 1D fractal Burgers� equation (a = 1.5); the exact initial condition also plotted (full line).
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tion (41). Both these solutions are obtained from the final state of the same system of particles by comput-

ing different statistics as discussed above.
5. Numerical experiments in two space dimensions

As is well known, Monte-Carlo simulations become increasingly attractive when the number of spatial

dimensions increases. To show evidence regarding the flexibility and feasibility of these approximations,

several numerical experiments in two space dimensions are presented here. For all the following simulations

the initial condition is a two-dimensional Gaussian distribution.
Fig. 11. Exact (left) and approximate (right) solution to the 2D incompressible Navier–Stokes equation in the vorticity formulation for

(a) t = 0.5 (b) t = 1 (c) t = 1.5. N = 120,000 particles, smoothing parameter � = 1.0.



D. Stanescu et al. / Journal of Computational Physics 206 (2005) 706–726 723
5.1. Navier–Stokes equation

Consider the vorticity formulation of the two-dimensional Navier–Stokes equations
Fig. 12

several
otuþ
R
R2 Kðx� yÞuðy; tÞdy � ru ¼ Du; t P 1=2;

uðx1; x2; 1=2Þ ¼ 1=ð2pÞ exp � x21 þ x22
� �

=2
� �

;

(
ð42Þ
where u ¼ uðx1; x2; tÞ; ðx1; x2Þ 2 R2; t 2 ½1=2; T �, and K is the Biot–Savart kernel (5). The initial condition

u(x1,x2, t = 1/2) corresponds to the exact solution
uðx1; x2; tÞ ¼
1

4pt
exp � x21 þ x22

� �
=4t

� �

representing an isolated vortex. Figs. 11 and 12 show the two-dimensional exact and approximate solution

and cuts along two perpendicular planes through the origin, respectively. Table 6 presents numerical esti-

mates of the L2-norm of the absolute error in the approximate solution U(x1,x2,T) at times T = 0.5, 1, 1.5,
2. Each discrete error is computed using the two-dimensional analogue of (32). It can be noticed that the

errors are low despite the small number of particles, N = 120,000, used in the simulation.

5.2. Scalar Burgers� equation

For the case of anomalous diffusion we consider the scalar two-dimensional fractal Burgers� equation
otuþ uox1uþ uox2u ¼ D1:5u;

uðx1; x2; 0Þ ¼ 1=ð2pÞ exp � x21 þ x22
� �

=2
� �

;

�
ð43Þ
. The approximate versus the exact solution for the Navier–Stokes equation in two perpendicular planes through the origin at

times.



Table 6

Discrete errors for the 2D Navier–Stokes equation

T 0.5 1 1.5 2

ierrori2 8.8817e � 3 9.9515e � 3 9.6396e � 3 9.6660e � 3
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where u ¼ uðx1; x2; tÞ; ðx1; x2Þ 2 R2, and t 2 [0,T]. The solution is constructed using a system of N = 600,000

particles. Fig. 13 shows the exact and approximate initial condition as well as the shape of the solution at

two later times. In Fig. 14, we show the solution along the x = 0 and y = 0 planes at several time instants.

Furthermore, Fig. 15 plots the analytical estimated decay rate together with the estimate obtained from our

numerical experiment for Eq. (31)
Fig. 13

the sm

Appro
kUðtÞk2 6 0:90634ð1þ tÞ�2=3
:

5.3. Parallel implementation

Since a large number of particles are needed to generate an accurate solution, all our programs have been

implemented in parallel. The parallel implementation is relatively straightforward and requires only a
. Interacting particles approximation to the solution of the 2D fractal (a = 1.5) Burgers� equation using 600,000 particles with

oothing parameter � = 1.0. (a) Exact initial condition, (b) approximate initial condition, (c) approximation at t = 0.5, and (d)

ximation at t = 1.



Fig. 14. Solution to the 2D fractal Burgers� equation in two perpendicular planes through the origin at several times.

Fig. 15. Time decay of the solution to the 2D fractal (a = 1.5) Burgers� equation using 600,000 particles.
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global gathering of information per each time step for the particle position vector. The programs are writ-

ten in Fortran using the portable communication library Message-Passing Interface (MPI) [22], under the

Single Instruction Multiple Data paradigm. To run the examples, we used a cluster of SGI Origin200 ma-

chines with four processors per machine running at 175 MHz.
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